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The challenge to retrieve canopy height from large-footprint satellite lidar waveforms over mountainous
areas is formidable given the complex interaction of terrain and vegetation. This study explores the potential
of GLAS (Geoscience Laser Altimeter System) for retrieving maximum canopy height over mountainous areas
in the Pacific Coast region, including two conifers sites of tall and closed canopy and one broadleaf woodland
site of shorter and sparse canopy. Both direct methods and statistical models are developed and tested using
spatially extensive coincident airborne lidar data. The major findings include: 1) the direct methods tend to
overestimate the canopy height and are complicated by the identification of waveform signal start and
terrain ground elevation, 2) the exploratory data analysis indicates that the edge-extent linear regression
models have better generalizability than the edge-extent nonlinear models at the inter-site level, 3) the
inter-site level test with mixed-effects models reveals that the edge-extent linear models have statistically-
justified generalizability between the two conifer sites but not between the conifer and woodland sites,
4) the intra-site level test indicates that the edge-extent linear models have statistically-justified
generalizability across different vegetation community types within any given site; this, combined with
3), unveils that the statistical modeling of maximum canopy height over large areas with edge-extent linear
models only need to consider broad vegetation differences (such as woodlands versus conifer forests instead
of different vegetation communities within woodlands or conifer forests), and 5) the simulations indicate
that the errors and uncertainty in canopy height estimation can be significantly reduced by decreasing the
footprint size. It is recommended that the footprint size of the next-generation satellite lidar systems be at
least 10 m or so if we want to achieve meter-level accuracy of maximum canopy height estimation using
direct and statistical methods.
l rights reserved.
© 2010 Elsevier Inc. All rights reserved.
1. Introduction

The vegetation in the Pacific Coast region provides important goods
and ecological services. The Pacific Coast forests, located in Northern
California, Oregon, and Washington, cover approximately 200,000 km2

and are the most productive forest region in the United States,
producing 25% of the annual lumber and 75% of the plywood in the
United States (Sharpe et al., 2003). These forests are typically coniferous,
closed, and tall, including 100-m-tall redwoods and giant sequoias that
may reach 10 m in diameter. Woodlands are another major type of
vegetation in this region thatmostly grows in California. Contrary to the
coastal conifer forests, woodlands are deciduous, more open, and
shorter. Nevertheless, they have important ecological functions in
protecting the soils in the Sierra Nevada and Coastal mountain ranges
and providing water for California's multi-billion dollar agricultural
economy (Baldocchi et al., submitted for publication). It is expected that
remote sensing can provide useful vegetation information for sustain-
able ecosystem management over this region.

Vegetation height is one of the leading dimensions of ecological
variations among tree species (Westoby et al., 2002) and is central to
ecosystem functioning (Moles et al., 2009). This study investigates the
potential of satellite laser altimetry, specifically the GLAS (Geoscience
Laser Altimeter System) on board ICESat (Ice, Cloud,and land
Elevation Satellite), for retrieving vegetation height of Pacific Coast
forests and woodlands. The lasers on GLAS transmit pulses from an
altitude of ∼600 km, producing 60 m nominal footprint size and
∼170 m shot-spacing on the ground (Zwally et al., 2002; Chen, 2010).
The receiver on GLAS records the vertical canopy structure up to
81.6 m for the early laser campaigns (Laser 1a and 2a periods) or
150 m for the later campaigns to avoid truncation of signals from tall
objects or steep slope (Harding & Carabajal, 2005). The waveforms of
81.6 m have a vertical resolution of 15 cm for a total of 544 bins while
the waveforms of 150 m have a vertical resolution of 15 cm for the
lower 392 bins and 60 cm for the upper 152 bins. Since its launch in
2003, GLAS has produced unprecedented dataset at the global scale
(Harding & Carabajal 2005). Nevertheless, only a paucity of studies
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has explored the use of GLAS for vegetation height retrieval (Lefsky
et al., 2005; Lefsky et al., 2007; Duong et al., 2008; Neuenschwander
et al., 2008; Rosette et al., 2008; Sun et al., 2008; Pang et al., 2008;
Duncanson et al., 2010).

The previous studies have used either direct (Duong et al., 2008;
Neuenschwander et al., 2008; Sun et al., 2008) or statistical (Lefsky
et al., 2005; Lefsky et al., 2007; Rosette et al., 2008; Pang et al., 2008;
Duncanson et al., 2010) methods to extract canopy height from GLAS
data. A GLAS waveform is typically characterized by multiple energy
peaks caused by the reflection from ground surface and the objects
(e.g. trees) above it (Fig. 1). Over flat areas, the lowest peak usually
corresponds to the ground if there is enough energy penetrating
through the surface objects. The direct methods are to simply estimate
canopy height based on the vertical difference between the waveform
signal start, which assumes to be the canopy top, and the ground peak
(Fig. 1(a)) (Hofton et al., 2000; Neuenschwander et al., 2008). To find
the ground peak, Gaussian decomposition is usually used to
decompose each waveform into multiple Gaussian distributions,
assuming the lowest peak representing the ground elevation (Hofton
Fig. 1. Scenarios to illustrate the effects of terrain slope and plant size and distribution on ca
and plant bottom is above ground peak; (c) a plant over a sloped surface and plant bottom
below the maximum elevation (zmax); (e) a short plant over a sloped surface with the max
et al., 2000; Duong et al., 2008; Neuenschwander et al., 2008). The
direct methods work well over flat areas (Neuenschwander et al.,
2008). However, over mountainous areas with large relief and
complex terrain, the peaks from ground and surface objects can be
broadened and mixed, making the identification of ground elevation
difficult (Zwally et al., 2002; Harding & Carabajal, 2005; Lefsky et al.,
2005; Chen, 2010). Over complex terrain, the lowest peak might
correspond to objects (e.g. short trees at the lower side of a footprint)
or minor terrain features that do not represent the central tendency of
terrain elevation within a footprint (e.g., flat surface such as waters
and valleys passing through the footprints). Several studies have
found that the elevation of the stronger one among the lowest two
Gaussian peaks, zmp, might have a better correspondence to ground
elevation (Rosette et al., 2008; Chen, 2010). Rosette et al. (2008) used
zmp to calculate canopy height from GLAS data and found that it has
better correlation with field measurements of canopy height than
using the lowest peak for 19 shots over a woodland in Gloucestershire,
UK. Chen (2010) analyzed ∼500 shots over a ∼2000 km2 region in
North Carolina and found that zmp is the best metric for ground
nopy height estimation. (a) a plant over a flat surface; (b) a plant over a sloped surface
is below ground peak; (d) plants over a sloped surface but top of the tallest tree (zct) is
imum ground elevation is higher than the canopy top elevation.
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elevation over both open terrain (with a bias of 0±0.77 m) and
mountainous forest areas (with a bias of 0.38±7.02 m). Even if the
terrain is simple with approximately constant slope, a non-flat terrain
might cause canopy height to be overestimated or underestimated,
depending on the spatial distribution of plants within footprints
(see Fig. 1(b) and (c)). To my best knowledge, no research has been
done to explore these research questions: Will direct methods over-
or under-estimate canopy height on average? What are their error
sources? How can the errors be minimized?

Besides the direct methods, statistical regression methods have
been developed to predict canopy height with waveformmetrics. The
regression models typically include waveform extent (Lefsky et al.,
2005; Rosette et al., 2008), which is the vertical distance between the
signal start and end of a waveform. Generally, the waveform extent
will increase with terrain slope even if the canopy is the same.
Therefore, metrics related to terrain slope are needed in the
regression models to remove its effects. The terrain information can
be derived from ancillary DEMs (Digital Elevation Models) (Lefsky
et al., 2005; Rosette et al., 2008) or from the waveform itself based on
metrics such as leading and trailing edge extent (Lefsky et al., 2007;
Pang et al., 2008). Unlike the direct methods, the statistical models are
essentially site-specific. Therefore, it is critical to investigate the
model generalizability over sites with different vegetation and terrain
conditions. In the past, statistical models have been developed and
Fig. 2. Locations of the three study sites (Mendocino, Ca
tested with a focus on forest areas with dense canopy (Lefsky et al.,
2007; Rosette et al., 2008; Pang et al., 2008) and little research has
been done over open and sparse canopy such as woodlands, especially
over mountainous areas. The difficulty of measuring open and short
vegetation using GLAS has been demonstrated in a recent study by
Nelson (in press). He compared the canopy height from airborne
profiling lidar and GLAS over 272 shots distributed between 46°N and
80°N in Quebec, Canada. The airborne profiler canopy height was
calculated as the average height of laser pulses on any given GLAS
shot. The GLAS canopy height was calculated as the vertical location of
the waveform above the ground peak where 50% of the waveform
energy lies above the height and 50% below. It was found that GLAS
overestimated the tree height up to 8 m over the treeline where
airborne profiler canopy heights are zeros.

When large-footprint waveform lidar systems acquire data over
mountainous vegetation areas, it is very likely to have terrain and
canopy returns at the same elevation, which makes the extraction of
terrain and vegetation information complicated and challenging
(Hyde et al., 2005; Chen, 2010). Therefore, the main objectives of
this study are to examine 1) how canopy height can be estimated from
GLAS data over mountainous areas using both direct and statistical
methods, 2) how a specific method can be applied across different
vegetation types including forests and woodlands, and 3) what the
error sources are when direct methods are used to estimate canopy
lifornia; Santa Clara, California; Lewis, Washington).
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height and how these errors can be minimized. As a state-of-the-art
remote sensing technology to measure 3D vegetation and terrain
properties precisely over large areas (Chen et al., 2007b; Chen, 2007;
Pang et al., 2008; Chen, 2010), airborne lidar is used to derive an
accurate and spatially-extensive dataset of canopy height and terrain
elevation over each GLAS footprint to evaluate different methods.
Given the importance of maximum canopy height in plant ecology
(e.g., Moles et al., 2009) and biomassmapping (e.g., Lefsky et al., 2005;
Boudreau et al., 2008), this study focuses on the estimation of
maximum canopy height within footprints from GLAS data.

2. Study area and data

2.1. Study area

The study area covers three mountainous vegetated sites,
including one conifer forest site in Mendocino, California, one
woodland site in Santa Clara, California, and another conifer forest
site in Lewis, Washington (Fig. 2). TheMendocino site is located in the
northern San Andreas Fault. Its primary land cover is upland redwood
forest, with a minority of pygmy cypress dwarf woodland and
northern mixed chaparral in the southeast and Bishop pine forest
Fig. 3. Topography and vegetation over GLAS shots at the three study sites: a)Mendocino, Cal
is the shaded digital surface model while on the right is the shaded digital elevation model a
square on the left image.
along the coast and the valley (Fig. 3(a)). The major co-dominant
species for primary land covers are Coast Redwood (Sequoia
sempervirens) and Douglas Fir (Pseudotsuga menziesii) for upland
redwood forest, non-native annual grassland (Avena spp., Bromus
spp., etc.) and Bishop Pine (Pinus muricata) for Bishop pine forest, and
Eastwood Manzanita (Arctostaphylos glandulosa) and Littleberry
Manzanita (Arctostaphylos nummularia) for northern mixed chaparral
and pygmy cypress dwarf woodland and Littleberry Manzanita
(Table 1(a)).

The primary land covers in the Santa Clara site are coast live oak
forest, blue oak woodland, and California annual grassland, with a
minority of Scrubs, Chaparral, and mixed evergreen forest (Fig. 3(b)).
The co-dominant species for coast live oak forest are BlueOak (Quercus
douglasii) and Coast Live Oak (Quercus agrifolia) (Table 1(b)). The blue
oak woodland is composed of Blue Oak, Valley Oak (Quercus lobata),
Buckeye (Aesculus californica), and non-native annual grassland. There
are also a minority of Diablan sage scrub, composed of California
Sagebrush (Artemisia californica) and non-native annual grassland,
andmixed evergreen forest, composed of Coast LiveOak and California
Bay (Umbellularia californica) (Table 1(b)).

The Lewis site mainly consists of conifer forests in the mid-seral
stage as well as in the early- and late-seral stages (Fig. 3(c)). In the
ifornia, b) Santa Clara, California, and c) Lewis,Washington. On the left of each subfigure
nd canopy height model from top to bottom, respectively, for the area indicated by the
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south, there are a few patches of forests that have been logged or
deforested by Mt. St. Helens explosion but has regrown to lush herbs,
shrubs, and young trees. The co-dominant species are Douglas Fir
(Pseudotsuga menziesii), Western Hemlock (Tsuga heterophylla), and
Silver Fir (Abies amabilis) for conifer forests. A minority of mixed
forests (Red Alder Alnus rubra, Douglas-fir, and Western Hemlock)
also exist in the northern part of the site (Table 1(c)).

The analysis of airborne lidar data indicates that the topography
over the GLAS shots for these three sites is generally steep with mean
slopes of around 20 degrees (Table 2). The Mendocino and Lewis sites
have similar vegetation structure of mean height (∼35 m) and canopy
cover (∼0.9). And they also have some common species such as
Douglas Fir. However, the Santa Clara site has much shorter
vegetation height (mean height of ∼10.7 m) and sparser canopy
cover (∼0.27) besides its distinct species composition as oak forests/
woodlands (Table 1 and 2).

2.2. GLAS data

The NSIDC (National Snow and Ice Data Center) disseminates 15
Level-1 and Level-2 GLAS data products. The products used in this
analysis include GLA01 (L1A Global Alimetry) and GLA14 (L2 Land
Surface Altimetry) from Release-28. The former stores transmitted
and received waveforms from the altimeter while the latter records
surface elevations for land and the laser footprint geolocation and
reflectance, as well as geodetic, instrument, and atmospheric correc-
tions for range measurements. These two datasets can be linked by
the record index.

GLAS waveforms might be contaminated by the atmospheric
forward scattering or saturated signals. Therefore, only the cloud-free
(the flag FRir_qaFlag=15 in the GLA14 products) and saturation-free
(the saturation index satNdx=0 in the GLA14 products) shots were
analyzed in this study (Chen, 2010; Duncanson et al., 2010); another
cloud filter was applied to make sure that the elevation of a waveform
must be less than 100 m above the SRTM (Shuttle Radar Topography
Mission) elevation; a shot was also excluded if the elevation of its
waveform centroid is greater than the maximum elevation or less
than the minimum elevation of the coincident airborne lidar points.

Based on the above criteria, a total of 400 (200 in Mendocino, 134
in Santa Clara, and 66 in Lewis) GLAS shots were selected (Table 2).
For the California sites, the GLAS shots are from campaign L3B (Feb–
Mar, 2005), L3C (May–Jun 2005), L3D (Oct–Nov 2005), L3E (Feb–Mar
2006), L3F (May–Jun 2006), and L3G (Oct–Nov 2006), where L3
stands for Laser 3 and each letter stands for different campaigns of
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data acquisition. For the Lewis site, only shots from L3B, L3D, and L3E
are available. The equivalent footprint diameters of these shots vary
from 46 to 66 m.

2.3. Airborne lidar data

The airborne lidar data in Mendocino, CA and Lewis, WA were
acquired by TerraPoint, LLC in February, 2003 using the Airborne Lidar
Terrain Mapping System (ALTMS), a discrete-return, scanning
airborne laser altimeter capable of acquiring up to 4 returns per
laser pulse (Harding, 2004). The flight altitude varied from 600 m to
2400 m above ground level. The horizontal coordinates are in survey
feet referenced to State Plane Coordinate System (NAD 83 HARN)
California II andWashington South for the Mendocino and Lewis sites,
respectively. Elevations are in international feet referenced to North
American vertical Datum 1988 (NAVD88). The orthometric elevations
were derived from ellipsoidal elevations using National Geodetic
Survey (NGS) GEOID99.

The data in Santa Clara were collected with an Optech ALTM 3100
lidar system by Optimal Geomatics, Inc. fromApril toMay in 2006. The
flight altitude varied from 1000 m to 2400 m above ground level. The
horizontal coordinates are in State Plane Coordinate System (NAD83)
California III in survey feet. The ellipsoid heights were converted to
NAVD88 orthometric heights in international feet using NGS
GEOID03. The lidar point density of the three study sites is all around
1 laser pulse per square meter. All of these lidar data were obtained
through the USGS Center for LIDAR Information Coordination and
Knowledge.

3. Methods

3.1. Extracting canopy height using direct methods

The performance of direct methods for maximum canopy height
estimation relies on the accurate identification of elevations for both
canopy top (zct) and canopy bottom (zcb) of the tallest plant within
a GLAS footprint. Usually, signal start (zs) and ground peak (zg)
elevation of a waveform are used to approximate canopy top and
canopy bottom, respectively (Duong et al., 2008; Neuenschwander
et al., 2008; Sun et al., 2008). Therefore, with direct methods,

hg = zs– zg ð1Þ

where hg is the maximum canopy height estimated from GLAS data, zs
and zg are the signal start and ground peak elevation estimated from a
GLAS waveform, respectively.



Table 1
Vegetation information for GLAS shots over the three sites: a) Mendocino, California, b) Santa Clara, California, and c) Lewis, Washington. (a) and (b) list the primary vegetation
community type and co-dominant species compiled from the California Gap Analysis Project. (c) lists the primary land cover compiled from the Washington Gap Analysis Project.
⁎BVT means broad vegetation type.

(a)

Abb. Primary community type Species A Species B Species C Shot count

RF Upland Redwood Forest Coast redwood Douglas fir Tanoak 111
RF Upland Redwood Forest Coast redwood N/A N/A 37
RF Upland Redwood Forest Coast redwood Douglas fir Bishop pine 25
RF Upland Redwood Forest Douglas fir Coast redwood Oregon oak 6
RF Upland Redwood Forest Douglas fir Coast redwood N/A 4
PF Bishop Pine Forests Non-native annual grassland Bishop pine Gowen cypress 10
PF Bishop Pine Forests Non-native annual grassland Bishop pine Monterey cypress 2
MC Northern Mixed Chaparral Eastwood manzanita Littleberry manzanita Braken 3
DW Pygmy Cypress Dwarf Woodland Eastwood manzanita Littleberry manzanita Huckleberry 2

(b)

Abb. Primary community type Species A Species B Species C Shot count

CF Coast Live Oak Forest Blue oak Coast live oak Non-native annual grassland 43
CF Coast Live Oak Forest Black oak Coast live oak Non-native annual grassland 6
BW Blue Oak Woodland Blue oak Buckeye 10
BW Blue Oak Woodland Coast live oak Valley oak Blue oak 7
BW Blue Oak Woodland Blue oak Valley oak Non-native annual grassland 7
BW Blue Oak Woodland Blue oak Valley oak Buckeye 6
BW Blue Oak Woodland Blue oak Buckeye Non-native annual grassland 3
BW Blue Oak Woodland Blue oak Non-native annual grassland 2
AG California Annual Grassland Non-native annual grassland 27
SS Diablan Sage Scrub California sagebrush Non-native annual grassland 11
EF Mixed Evergreen Forest Coast live oak California bay 6
CW Coast Live Oak Woodland Coast live oak Valley oak Non-native annual grassland 4
CC Chaparral with Chamise Chamise 2

(c)

Abb. Primary land cover Shot count

CM Conifer forest; mid-seral; closed; usually Western Hemlock/Douglas-fir. 32
CM Conifer forest; mid seral; closed; usually Western Hemlock/Silver Fir, with Douglas-fir at lower elevations. 13
CL Conifer forest; late seral; closed; usually Silver Fir/Western Hemlock. 5
CE Conifer forest; early seral; closed; usually Douglas-fir. 3
NF Non-forested; logged, regrowth to lush herbs, shrubs, and young trees. 7
NF Non-forested; logged or deforested by Mt. St. Helens explosion; regrowth to lush herbs, shrubs, young trees. 2
MF Mixed forest; early seral; closed; usually Red Alder/Douglas-fir. 2
RP Riparian; mixed communities. 2
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To identify the signal start, each received waveform is first
smoothed using the parameters extracted from its corresponding
transmitted waveform, the laser waveform sent from GLAS. Note that
each receivedwaveform is a convolution of the transmitted waveform
and the illuminated surface reflectance properties so the received
waveform is related to transmitted waveform. The transmitted
waveform is fitted with a Gaussian function:

y = a expð− ðx−utÞ2
2σ2

t
Þ + c ð2Þ

where y is the transmitted waveform counts, ut and σt are the mean
and standard deviation of the Gaussian function, a and c are constants
Table 2
Topography and vegetation physiognomy for GLAS shots over the three study sites.

Site Elevation (m) a Slope
(deg) b

Canopy
coverb

Maximum
canopy ht
(m) a

Shot
count

Mendocino,CA 177.8 (−3.6-622.9) 20.3±9.3 0.90±0.10 35.6±8.4 200
Santa Clara, CA 406.2 (207.1-575.2) 20.6±8.4 0.27±0.22 10.7±6.0 134
Lewis, WA 794.2 (454.1-1182.2) 21.3±9.2 0.90±0.11 35.0±10.7 66

a The first number is themean, the numbers in the parentheses are theminimum and
maximum values.

b The first number is the mean and the second is the standard deviation. The terrain
and canopy characteristics are derived from airborne lidar data.
(Fig. 4(a)). Then, the received GLAS waveform is smoothed with a
Gaussian filter of 2σt and a window size of 6σt to avoid the
background noise to be detected as signal (Sun et al., 2008) (Fig. 4
(b)). The signal start is identified as the first bin location where the
waveform intensity is a certain threshold above the mean background
noise µb in the waveform. Previous studies have used different
thresholds, including 3σb (Sun et al., 2008), 4σb (Lefsky et al., 2005),
or 4.5σb (Lefsky et al., 2007), where σb is the standard deviation of the
background noise. Both µb and σb are recorded in the GLA01 product.
This study will examine a sequence of thresholds n×σb (n=0.5,1,
…,5) and see which threshold produces the best match with the
highest Z coordinate(s) for the corresponding airborne lidar point
cloud within each GLAS footprint.

The ground peak identification is usually based on the Gaussian
decomposition results. The GLA14 products record the parameters
(mean, standard deviation, and amplitude) for up to 6 decomposed
Gaussian peaks. However, there is no widely accepted method for
estimating ground elevation from Gaussian peaks (Duong et al., 2008,
Rosette et al., 2008, Sun et al., 2008, Chen, 2010). In this study, two
sets of metrics derived from Gaussian decomposition are used to
evaluate the ground elevation: 1) the elevation of individual Gaussian
peak (zi, i=1,…,6), and 2) the elevation of the peak of maximum
amplitude among the lowest n peaks (zmax,n, n=2,…,6). Assuming the
amplitude of each Gaussian peak is ai (i=1,2, …, 6),

zmax;n = zai = maxða1 ;a2 ;:::;anÞ; where i = 1;…;n and n = 2;…;6 ð3Þ



Fig. 4. Examples of (a) a transmitted waveform, and (b) a received GLAS waveform. The
smoothed waveform and fitted Gaussian distribution are also shown in (b).
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3.2. Modeling canopy height using statistical methods

A total of three models are developed to predict maximum canopy
height as follows:

hg = a1 × wfExt − a2 × demExt ð4Þ

hg = a1 × wfExt − a2 × leadExt + trailExtð Þ ð5Þ

hg = a1 × wfExt − a2 × leadExt + trailExtð Þð Þa3 ð6Þ

where hg is the predicted maximum canopy height from GLAS
waveform metrics; wfExt, leadExt, and trailExt are the GLAS
waveform extent, leading-edge extent, and trailing-edge extent,
respectively. Leading-edge extent is the vertical elevation difference
between signal start and the highest bin that is at half maximum
intensity; trailing-edge extent is the vertical elevation difference
between signal end and the lowest bin that is at half maximum
intensity (Lefsky et al., 2007). demExt is the DEM extent, which is the
difference between maximum and minimum elevation of airborne
lidar DEM within each GLAS footprint.

Only a few studies (Lefsky et al., 2005; Rosette et al., 2008) have
developed statistical models to predict maximum canopy height from
GLAS. The statistical models in these studies included waveform
extent as an independent variable. To remove the broadening effects
caused by the sloped terrain, DEM-based terrain metrics that quantify
the vertical elevation range within or surrounding footprints were
included in the models of these studies. For example, Lefsky et al.
(2005) used the elevation range within three neighborhood windows
(3×3, 5×5, 7×7) of 30 m- or 90 m-SRTM DEM around each GLAS
shot. Rosette et al. (2008) used the elevation range within a 7×7
neighborhood of 10 m-DEM. Considering that conventional DEMs
might not adequately characterize topography over forest areas,
Lefsky et al. (2007) and Pang et al. (2008) estimated canopy height
with metrics derived from waveform themselves. Lefsky et al. (2007)
proposed multiple transformations of three waveform metrics
(waveform extent, leading-edge extent, and trailing-edge extent)
and then used stepwise regression to develop correction factors for
broadened waveform extent to estimate mean canopy height. A later
study by Pang et al. (2008) found that such an approach led to many
unrealistic estimates of canopy height and thus proposed a simpler
nonlinear model like Model (6) to estimate the crown-area weighted
mean canopy height. In light of these studies, the development of
statistical models for estimating maximum canopy height is based on
several criteria: 1) to avoid “over-fitting”, the model should be simple
according to Occam's razor or the law of parsimony that the simplest
explanation or strategy tends to be the best one, 2) instead of relying
on ancillary DEMs, the model will be based on metrics derived from
waveforms themselves. Models (5) and (6) are developed based on
these criteria. Note that Model (6) has been used in Pang et al. (2008)
to estimate crown-area weighted mean canopy height instead of
maximum canopy height. Model (5) is developed in this study to
examine how an even simpler linear model performs when compared
to the nonlinearModel (6). Model (4) is supposed to generate the best
results since it is based on airborne lidar data. Therefore, this model is
mainly used as a benchmark to examine how the models based on
waveformmetrics themselves perform compared to themodels based
on high-quality DEMs. Models (4)–(6) are referred as DEM linear
model, edge-extent linear model, and edge-extent nonlinear model
hereinafter. To calculate the maximum canopy height from airborne
lidar data for developing these statistical models, the Z coordinates of
all lidar points within a GLAS footprint are subtracted by the
elevations of the corresponding DEM cells to remove the terrain
variations.

The calculation of waveform, leading-edge, and trailing-edge
extents requires the elevations of waveform signal start and end.
The elevation of signal end is identified using an approach similar to
the one finding the signal start in the direct methods, which is to
examine a sequence of thresholds n×σb (n=0.5,1, …,5) and see
which threshold produces the best match with the lowest Z
coordinates for the corresponding airborne lidar point cloud within
each GLAS footprint.

The coefficient of determination (R2) is perhaps the single most
extensively used measure of goodness of fit for regression models
(Kvålseth, 1985). However, there are problems with R2 for the no-
intercept model (Anderson-Sprecher, 1994). Using five-fold cross-
validation, this study assesses different methods at individual sites
based on a number of statistics including the difference (ε_cv),
adjusted R-square (R2

a_cv), root mean square error (RMSE_cv), and
Akaike information criterion with second-order bias correction
(AIC_cv) between the canopy height predicted from GLAS data (hg)
and the canopy height derived from airborne lidar data (ha) (Chen
et al., 2007a).

3.3. Examining generalizability of the statistical models

GLAS is a large-footprint satellite lidar system that aims to map
canopy height at the regional and global scales. Therefore, it is critical
to evaluate the generalizability of the developed statistical models.
This study will test model generalizability at inter-site and intra-site
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levels: the inter-site generalizability means that how a model
developed at one site performs at other sites; the intra-site
generalizability refers to that how a model developed for one
vegetation community type within a site can be applied to other
community types within the same site (Table 1). To extrapolate the
statistical models to a larger area, the models developed at the inter-
and intra-site levels require different amount of ground-truth data for
model calibration and maps of different details for stratification of the
whole study area. Therefore, the model generalizability test at these
two levels can help determine how to optimally stratify a study area
so that both the efforts of ground-truthing and the model prediction
errors can be minimized.

A combination of exploratory data analysis and advanced
statistical analysis are used to examine the model generalizability.
The exploratory data analysis involves the evaluation of model fitting
statistics when a model developed at any particular site is applied at
the other two. The evaluated statistics include difference (ε),
correlation (r), root mean square error (RMSE), and Akaike informa-
tion criterion with second-order bias correction (AIC) between the
canopy height predicted from GLAS data (hg) and the canopy height
derived from airborne lidar data (ha). Note that correlation (r) instead
of adjusted R-square is used because adjusted R-square is not
appropriate if hg is highly biased compared to ha. Due to the limitation
of space, only the results of the exploratory data analysis at the inter-
site level are reported in this study.

The advanced statistical analysis deals with the use of mixed-
effects model to examine whether there are random effects in the
model coefficients, which is conducted at both inter-site and intra-site
levels. Eqs. (4)–(6) are called fixed-effects models since the model
coefficients are constants. Mixed-effects models can be developed
corresponding to Eqs. (4)–6). Taking Eq. (5) as an example, the
corresponding general mixed-effect model could be as follows:

hg;ij = β1;i × wfExtij– β2;i × leadExtij + trailExtij
� �

+ εij ð7Þ

β1;i = β1 + u1;i ð8Þ

β2;i = β2 + u2;i ð9Þ

where i represents individual sites (when the model is developed at
the inter-site level) or primary vegetation community types within
each site (when the model is developed at the intra-site level), j refers
to individual GLAS shots in site i or vegetation community type i, and
εij is the residuals.

Combine Eqs. (7)–(9), and we have:

hg;ij = β1 × wfExtij– β2 × leadExtij + trailExtij
� �

+ u1;i

× wfExtij– u2;i × leadExtij + trailExtij
� �

+ εij
ð10Þ

where β1 and β2 are fixed-effects, while u1,i, u2,i, and εij are random
effects. If any of the random effects u1,i and u2,i is statistically
significant, it implies that the corresponding fixed-effects model does
not have good generalizability across different sites or across different
vegetation community types within a site.

3.4. Simulation of the footprint size effects on canopy height estimation

Extracting canopy height from GLAS data is mainly complicated by
the uncertainty of finding the exact vertical elevations of canopy top
and bottom from GLAS waveforms at the tree level. Given its large
footprint, it is difficult for GLAS to characterize canopy structure at the
individual tree level because GLAS waveforms are a mixture of signals
from all trees and terrain within the footprint. To reduce the
uncertainty in canopy height estimation, the most effective approach
might be reducing the waveform footprint size. However, little
research has been done to investigate the effects of footprint size on
canopy height estimation, although it has important implications for
determining the optimal footprint size for next-generation satellite
lidar systems.

A proof-of-concept approach as follows is used to simulate the
effects of footprint size on canopy height estimation. First, airborne
lidar point clouds are extracted around the centers of the GLAS
footprints. The elevation difference between the highest and lowest
point within a footprint is considered as a surrogate of GLAS
waveform extent (wfExt). The DEM extent (demExt) is extracted
from the DEM generated from airborne lidar data. The ground peak
elevation zg is the weighted mean elevation of DEM while zs is the
elevation of the highest point. To calculate the maximum canopy
height ha, the Z coordinates of raw lidar points are normalized by
subtracting the corresponding ground elevation. The direct method
and the DEM linear model are tested at four footprint sizes varying
from 40 m to 10 m by every 10 m.

3.5. Registering airborne lidar data and GLAS data

The airborne lidar and GLAS data have to be georeferenced to the
same horizontal and vertical datums for comparison purpose. The
geodetic latitude, longitude, and elevation of GLAS data are referred to
the TOPEX/Poseidon ellipsoid, which was converted into WGS 84
datum. The airborne lidar data have orthometric elevations in NAVD
88 datum,whichwere converted to ellipsoid heights in NAD 83 datum
using the GEOID99 or GEOID03 model of National Geodetic Survey
(NGS). WGS 84 datum is earth-centered while NAD 83 datum is not
even though they use almost the same ellipsoid, so the datum of
airborne lidar data is further converted to WGS84, which is
accomplished using the NGS HTDP (Horizontal Time Dependent
Positioning) software (Chen, 2010).

To derive ground elevation from airborne lidar data, the ground
returns are first extracted from the raw point clouds and then
interpolated into DEMs of 1×1 m cells using the Tiffs (Toolbox for
Lidar Data Filtering and Forest Studies) software (Chen, 2007; Chen
et al., 2007b; Chen, 2009). Considering the spatial distribution of
transmit pulse intensity within a footprint, the elevation of cells
within a footprint is weighted using the following equation:

w = eð−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 =aÞ2 + ðy0 =bÞ2

p
Þ

x0 = ðx−x0Þ sinα + ðy−y0Þ cosα
y0 = ðy−y0Þ sinα−ðx−x0Þ cosα

ð11Þ

where w is the weight for any airborne lidar DEM grid cell within a
footprint; a and b are the semi-major and semi-minor axes of the
footprint; (x,y) and (x0,y0) are the coordinates for the cell and the
footprint center, respectively; x′ and y′ are coordinates of the cell
along major and minor axes, respectively, with the footprint center as
the origin of the coordinate system; α is the azimuth angle of the
major-axis of the footprint. The weights in Eq. (11) are normalized so
that their sum is 1 before averaging. The weighted mean elevation zw
from airborne lidar DEM is used to identify the Gaussian peak that
mostly matches the ground.

The GLAS shots over open and flat terrain, called calibration shots,
are analyzed to check whether there is systematic difference between
airborne lidar and GLAS data (Chen, 2010). The waveforms of these
shots should have only one distinct peak indicating the mean ground
elevation. Two metrics are derived from airborne lidar data within
each GLAS footprint to help identify the GLAS shots over open and flat
terrain: 1) the ratio nr between the number of non-terrain returns and
all returns, which indicates openness of the footprint area, 2) the
mean slope sw weighted using Eq. (11). If nr is less than 5% and sw is
less than 5°, a shot is considered as a calibration shot.



Table 3
Difference between various ground elevation metrics derived from GLAS zg and the
weighted mean ground elevation zw derived from airborne lidar data within footprints.
A total of 11 ground elevation metrics zg are assessed, including the elevation of 6
Gaussian peaks (zi, i=1, …, 6) and 5 maximum peak (zmax,n, n=2, …, 6). zmax,n means
the elevation of the peak of the maximum amplitude among the lowest n peaks.

Peak zg−zw (m)

Mendocino Santa Clara Lewis

z1 −4.3±5.6 −7.3±5.6 −4.6±6.2
z2 4.7±7.4 −3.0±4.8 5.3±7.4
z3 9.8±7.8 0.4±4.1 11.8±7.9
z4 14.2±7.6 3.8±4.2 16.5±7.4
z5 18.2±7.7 7.3±4.9 21.1±7.3
z6 23.0±8.0 11.6±5.7 25.7±8.6
zmax,2 3.2±7.7 −4.4±5.5 3.7±8.1
zmax,3 5.9±7.7 −2.0±4.2 7.8±8.5
zmax,4 7.3±8.3 −0.9±4.1 8.9±9.2
zmax,5 9.3±9.6 0.0±4.0 10.3±9.4
zmax,6 13.5±10.3 1.0±4.7 15.6±11.9

Table 4
Difference 1) between signal start (zs) and the highest elevation (zmax), and 2) between
signal end (ze) and the lowest elevation (zmin) when different thresholds (n×σb, where
σb is the standard deviation of the waveform background signal) are used for the three
study sites.

n Mendocino Santa Clara Lewis

zs−zmax

(m)
ze−zmin

(m)
zs−zmax

(m)
ze−zmin

(m)
zs−zmax

(m)
ze−zmin

(m)

0.5 5.7±6.2 −9.8±5.5 8.0±6.5 −6.5±4.4 9.5±9.1 −9.0±6.8
1 3.7±5.3 −6.6±5.0 5.5±5.3 −5.3±4.2 6.5±8.0 −6.5±5.9
1.5 2.1±4.5 −4.5±4.8 3.7±4.7 −4.3±3.6 3.9±5.8 −4.5±5.8
2 1.0±4.2 −3.1±4.5 2.5±4.3 −3.4±3.7 2.5±5.2 −2.8±5.4
2.5 0.1±4.0 −1.6±4.5 1.5±4.1 −2.5±3.4 1.4±4.7 −1.7±5.5
3 −0.6±3.8 −0.4±4.5 0.5±4.0 −1.8±3.2 0.1±5.5 −0.9±5.5
3.5 −1.2±3.8 0.6±4.7 −0.1±3.9 −1.2±3.0 −0.6±5.5 0.4±5.8
4 −1.8±3.9 1.4±5.0 −0.7±3.8 −0.7±3.0 −1.1±5.5 1.9±6.8
4.5 −2.3±3.8 2.1±5.2 −1.1±3.8 −0.3±3.0 −1.6±5.4 2.6±6.8
5 −2.7±3.8 2.7±5.3 −1.4±3.7 0.1±2.9 −2.0±5.4 3.3±6.8
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4. Results and discussion

4.1. Systematic difference between GLAS and airborne lidar data

Thirteen of the 134 shots in the Santa Clara site were identified as
calibration shots. The elevation difference between the distinct GLAS
peak and weighted mean ground elevation zw from airborne lidar is
0.05±0.49 m for these shots. Due to the closed canopy in the
Mendocino and Lewis sites, no shots can be counted as calibration
shots. However, in the coastal area of the Mendocino site, there are a
large number of shots located on the beach (not shown in Fig. 3(b))
and 50 of them were identified as calibration shots. The elevation
difference is 0.05±0.54 m for these 50 shots. These small values
indicate that the systematic differences between GLAS and airborne
lidar data are relatively small. Although there are no calibration shots
for the Lewis site, the difference is expected to be small given that the
same airborne lidar system as the one at theMendocino site was used.
Table 5
Performance of direct methods for estimating maximum canopy height. ε, r, and RMSE
are the difference, correlation, and root mean square error between estimated canopy
height and the canopy height from airborne lidar data, respectively.

Site ε (m) r RMSE (m)

Mendocino −1.99 0.47 9.12
Santa Clara 3.69 0.58 7.24
Lewis 0.18 0.62 10.25

Fig. 5. Comparison between canopy height extracted from GLAS (hg) using direct
methods and the corresponding canopy height derived from airborne lidar data (ha) for
the (a) Mendocino, (b) Santa Clara, and (c) Lewis sites. ε, r, and RMSE are the difference,
correlation, and root mean square error between hg and ha, respectively.



Table 6
Three regression models (DL: DEM linear model; EN: Edge-extent linear model; and EN: Edge-extent nonlinear model) developed at the Mendocino, Santa Clara, and Lewis sites,
respectively. ε_cv, R2a_cv, RMSE_cv, and AIC_cv are the difference, adjusted R-square, root mean square error, Akaike information criterion with second-order bias correction
calculated with five-fold cross-validation. Δ=AIC_cv−AICmin, where AICmin is the minimum of the different AIC_cv values at a site.

Site Model type ε_cv R2a_cv RMSE_cv AIC_cv Δ Model

Mendocino DL: DEM linear −0.30 0.46 6.18 731.90 0.00 M_DL: h=0.87×wfExt–0.29×demExt
EL: Edge-extent linear −0.38 0.42 6.40 750.51 18.61 M_EL: h=0.85×wfExt–0.17×(leadExt+trailExt)
EN: Edge-extent nonlinear −0.24 0.38 6.37 748.55 16.65 M_EN: h=0.85×wfExt–(0.08×(leadExt+trailExt))1.82

Santa Clara DL: DEM linear −0.39 0.34 4.88 427.32 0.00 S_DL: h=0.64×wfExt–0.27×demExt
EL: Edge-extent linear −0.40 0.28 5.08 438.18 10.87 S_EL: h=0.43×wfExt–0.02×(leadExt+trailExt)
EN: Edge-extent nonlinear −0.06 0.31 4.97 436.31 9.00 S_EN: h=0.46×wfExt–(0.05×(leadExt+trailExt))4.45

Lewis DL: DEM linear −1.13 0.24 9.31 301.70 0.00 L_DL: h=0.84×wfExt–0.31×demExt
EL: Edge-extent linear −1.18 0.21 9.47 302.73 1.03 L_EL: h=0.81×wfExt–0.17×(leadExt+trailExt)
EN: Edge-extent nonlinear −0.88 0.21 9.26 301.87 0.16 L_EN: h=0.80×wfExt–(0.08×(leadExt+trailExt))1.54
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4.2. Airborne lidar data filtering and DEM generation

The canopy height and terrain elevation derived from airborne
lidar are affected by the filtering of the lidar point cloud, the process of
identifying ground returns. Unlike many other software packages that
require manual editing of the point cloud, Tiffs uses an automatic
filtering algorithm (Chen et al., 2007b; Chen, 2009) to search ground
returns and generate a DEM. The filtering algorithm achieved the best
overall performance when compared with other eight algorithms that
were tested with the ISPRS Commission III/WG3 benchmark dataset
including sites ranging from urban to rural areas with different
complexity (Chen et al., 2007b). Although there is no direct ground
truth data to validate the filtering accuracy, a DEM generated by
automatic classification followed by manual inspection is available
through the Planetary Geodynamics Laboratory at NASA's Goddard
Space Flight Center for the Mendocino site (Harding, 2004). It was
found that the difference of weightedmean ground elevation between
the Tiffs DEM and NASA DEM is 0.01±0.73 m at the 200 GLAS shot
locations. The small mean difference indicates that the automatic
approach used in Tiffs achieved comparable accuracy with the
manually edited DEM. There are no DEMs available for the other
two sites, but it is reasonable to assume that the DEMs at these two
sites are comparable, or with even better quality, given that terrain
and vegetation are similar to those at the Lewis site and less complex
than those at the Santa Clara site.

4.3. Correspondence between Gaussian peak elevation metrics and
ground elevation

As mentioned earlier in Section 3.1, two set of metrics derived
from Gaussian decomposition are used to evaluate the ground
elevation: 1) the elevation of individual Gaussian peak (zi, i=1,
…,6), and 2) the elevation of the peak of maximum amplitude among
the lowest n peaks (zmax,n, n=2,…,6).
Table 7
Inter-site analysis of the three regression models (DL: DEM linear model; EN: Edge-extent
RMSE, and AIC are the difference, correlation, root mean square error, and Akaike informa
AICmin is the minimum of the different AIC values at a site.

Model Mendocino site Santa Clara site

ε (m) r RMSE(m) AIC Δ ε (m) r R

M_DL −0.30 0.71 6.07 727.5 0.0 4.88 0.62 7
M_EL −0.39 0.69 6.34 744.8 17.3 7.67 0.58 10
M_EN −0.22 0.68 6.27 740.2 12.7 8.63 0.58 10
S_DL −10.59 0.71 12.15 1005.0 277.6 −0.38 0.62 4
S_EL −15.95 0.69 17.14 1142.8 415.3 −0.38 0.58 5
S_EN −24.68 −0.28 31.06 1380.5 653.0 −0.10 0.59 4
L_DL −1.92 0.71 6.30 744.2 16.8 3.77 0.62 6
L_EL −2.31 0.69 6.64 765.3 37.9 6.70 0.58 9
L_EN −1.69 0.69 6.42 751.8 24.3 7.52 0.58 9
Among the first set of elevation metrics, the lowest peak (z1)
significantly underestimates the ground elevation at these three study
site. The average biases are −4.3±5.6 m, −7.3±5.6 m, and −4.6±
6.2 m for the Mendocino, Santa Clara, and Lewis sites, respectively
(Table 3). At theMendocino and Lewis sites, all Gaussian peaks except
the lowest one overestimate the ground elevation on average. At the
Santa Clara site, the third lowest peak (z3) is the closest to the ground
elevation on average.

Among the second set of elevation metrics, it was found that the
stronger peak among the last two (zmax,2) is closer to the ground
elevation than any other peaks of maximum amplitude at the
Mendocino and Lewis sites. This is consistent with the results from
another study of 482 GLAS shots over the Appalachians Mountain in
North Carolina, where zmax,2 matches the ground elevation well (with
a bias of 0.38±7.02 m) (Chen, 2010). However, on average zmax,2

overestimates the ground elevation by a larger magnitude of 3.2±
7.7 m and 3.7±8.1 m for the Mendocino and Lewis sites, respectively.
This might be because there is not enough energy returned from the
terrain due to the high biomass and closed canopy above ground at
these two sites. At the Santa Clara site, the strongest peak among the
lowest five Gaussian peaks has the smallest bias (0.0±4.0 m) when
compared to the ground elevation. Compared to the conifer sites, the
canopy at this site is open and sparse. If trees are concentrated at the
lower side the slope in a footprint, it is possible that the ground peak is
higher thanmost of the other Gaussian peaks, which explains why it is
not the lowest peaks that correspond to the ground elevation. This
indicates that, if direct methods are used for estimating canopy
maximum height, the ground elevation peaks over woodlands may
need to be extracted separately from those over other land covers.

4.4. Optimal thresholds for signal start and end of GLAS waveforms

Table 4 lists the elevation difference between the GLAS waveform
signal start (zs) and the highest elevation (zmax) derived from airborne
linear model; and EN: Edge-extent nonlinear model) for predicting canopy height. ε, r,
tion criterion with second-order bias correction, respectively. Δ=AIC−AICmin, where

Lewis site

MSE (m) AIC Δ ε (m) r RMSE(m) AIC Δ

.45 540.3 118.4 0.75 0.64 9.20 299.3 3.1

.10 621.2 199.3 0.72 0.61 9.35 301.5 5.2

.86 640.5 218.6 0.68 0.60 9.24 299.9 3.6

.77 421.9 0.0 −9.79 0.64 12.76 344.7 48.5

.00 434.1 12.2 −15.16 0.61 17.34 385.3 89.0

.87 427.4 5.4 −23.37 −0.14 30.02 457.7 161.4

.57 509.1 87.2 −1.13 0.64 8.99 296.3 0.0

.20 598.6 176.7 −1.07 0.61 9.16 298.8 2.5

.86 617.0 195.0 −0.73 0.61 9.08 297.6 1.3



Fig. 6. Inter-site analysis of the regression models for predicted canopy height from GLAS (hg). Each subfigure shows not only the predicted canopy height using themodel developed
at a particular site, but also the predicted canopy heights using the two other models developed at the other two sites. Subfigures (a)-(c), (d)-(f), (g)-(i) are the model test results for
Mendocino, Santa Clara, and Lewis, respectively. Subfigures (a), (d), and (g) are for the DEM linearmodels (DL); subfigures (b), (e), and (h) are for the edge-extent linear model (EL);
subfigures (c), (f), and i) are for the edge-extent nonlinear models (EN). Refer to Table 6 for the specific models.
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Fig. 6 (continued).
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lidar data as well as the difference between the GLAS waveform signal
end (ze) and the lowest elevation (zmin) from airborne lidar when
different thresholds (n×σb) are used. The threshold that matches the
airborne lidar data is considered as the optimal threshold. There are
no consistent optimal thresholds that can be applied over all three
sites. For the Mendocino site, the optimal threshold for signal start
and end are 2.5σb and 3σb, respectively. For the Lewis site, the optimal
threshold for signal start and end are 3σb and 3.5σb, respectively. The
Santa Clara site has the largest optimal thresholds 3.5σb and 5σb to
match zmax and zmin, respectively. The preliminary analysis (results
not shown) indicates that it was the background noise and relatively
weak signals from the canopy top and lowest elevation that made it
difficult to identify the signal start and end in a consistent way. To
develop amethod that can consistently detect the signal start and end,
we may need airborne lidar data with higher point density since the
current lidar data might miss some treetops of the conifer trees.

4.5. Comparison of different methods

4.5.1. Direct methods
Fig. 6(a)–(c) show the canopy height extracted from GLAS data

using direct methods (hg) versus the maximum canopy height (ha)
derived from airborne lidar data. Note that ha is determined by the
elevation difference of the canopy top (zct) and canopy bottom (zcb) of
the tallest plant within a footprint. The difference ε±RMSE between
hg and ha are −1.99±9.12 m, 3.69±7.24 m, and 0.18±10.25 m for
the Mendocino, Santa Clara, and Lewis sites, respectively. The
correlation r between hg and ha is the highest at Lewis site (0.62),
followed by the Santa Clara site (0.58) and the Mendocino site (0.47)
(Table 5).

It is suspected that several factors can lead to the discrepancy
between hg and ha: i) the elevation of the highest element within a
footprint (zmax) is not necessarily at the top of the tallest plant (zct).
For example, the highest point might be the top of a shorter tree that
is located in higher elevation (Fig. 1(d). It might also simply be the
terrain instead of any vegetation (see Fig. 1(e)), which could occur for
sparse canopy over steep terrain such as the Santa Clara woodland
site; ii) the tallest tree is not located in the ground peak elevation so
that zcb is not the same as the GLAS-derived ground peak zg (see Fig. 1
(b)–(e)); and iii) there exists a difference between the elevation of the
detected signal start (zs) and zmax. Overall, the error budget of GLAS
canopy height compared to canopy height derived from airborne lidar
can be summarized as:

ε = hg– ha = εzs ;zmax
+ εzmax ;zct

+ εzcb ;zw + εzw ;zg ð12Þ

where εzs,zmax
= zs−zmax, εzmax,zct=zmax−zct, εzcb,zw=zcb−zw, and εzw,zg=

zw−zg, and the corresponding mean error is:

E εð Þ = Eðεzs ;zmax
Þ + Eðεzmax;zct

Þ + Eðεzcb;zw Þ + Eðεzw ;zg Þ ð13Þ

Basically, εzcb,zw is affected by the location of the tallest plant within
a footprint. For example, for terrain with constant slope s, the
maximum possible value of εzcb,zw is related to s and the footprint
semi-major axis a by:

maxðεzcb ;zw Þ = tan sð Þ × a ð14Þ

However, E(εzcb,zw) is zero if we assume that the location of the
tallest plant within a footprint is random. So, Eq. (13) can be
simplified as:

E εð Þ = Eðεzs ;zmax
Þ + Eðεzmax;zct

Þ + Eðεzw ;zg Þ ð15Þ

Furthermore, if the elevation of the detected signal start zs matches
the highest elevation zmax and the detected ground peak zg matches
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the mean ground elevation zw, E(εzs,zmax
) and E(εzw,zg) can also be

assumed to be zero. In such a situation, the mean error E(ε) is solely
determined by εzmax,zct, the elevation difference of the maximum
element zmax and canopy top zct:

E εð Þ = Eðεzmax;zct
Þ ð16Þ

It should be noted that zmax is always equal to or greater than zct,
therefore, E(εzmax,zct) can never be negative. This means that the direct
method intrinsically tends to overestimate the canopy height when
the signal start and mean ground elevation can be estimated with no
bias.

The weighted mean ground elevation zw was estimated by the
optimal ground elevation metric zg with a bias of 3.2 m, 0 m, and 3.7 m
for the Mendocino, Santa Clara, and Lewis site, respectively (see
Table 3). Therefore, E(εzw,zg) is −3.2 m, 0 m, and −3.7 m, respectively.
According to the values of E(εzs,zmax

) from Table 4 and Eq. (15), it can be
derived that E(εzmax,zct) is 1.1 m, 3.8 m, and 3.8 m for the Mendocino,
Santa Clara, and Lewis site, respectively. The positive values of E(εzmax,zct)
confirms the former analysis. Note that it is more likely to have positive
E(εzmax,zct) for sloped terrainwith short and sparse canopy (see Fig. 1(e)).
This explains why shots are located above the 1:1 line in the
scatterplots of Fig. 5(b) when their canopy is short (ha is less than
2 m) and canopy cover is low.

4.5.2. Multiple regression models
Table 6 lists the model fitting statistics at the three study sites

calculated with five-fold cross validation. To compare models based
on AIC, the common practice is to rescale the values with the
minimum value of these models using Δ=AIC−AICmin, where AICmin

is the minimum of the different AIC values (Burnham & Anderson,
2002; Chen et al., 2007a). This transformation forces the best model to
haveΔ=0. Some simple rules are often useful in assessing the relative
merits ofmodels: ModelswithΔ≤2 have substantial support, those in
which 4≤Δ≤7 have considerably less support, and models with
ΔN10 have essentially no support (Burnham & Anderson, 2002). In
the following analysis, AIC is preferred for evaluating different
models. However, adjusted R2 and RMSE, along with the difference
ε, are also analyzed since they have been widely used and are likely to
be in continued use in the future (Anderson-Sprecher, 1994).

Among the three types of regression models, the DEM linear
models produce the best results with adjusted R-square R2a_cv of 0.46,
0.34, and 0.24 for the Mendocino, Santa Clara, and Lewis site,
respectively (Table 6). They also have the smallest AIC_cv and
RMSE_cv values. This is reasonable given that the demExt is derived
from airborne lidar data, which provides the most direct and precise
information about terrain variability. Between the two edge-extent
models, the nonlinear models have slightly lower AIC values than the
linearmodels (Table 6). However, the AIC differences are less than 2 at
Table 8
Edge-extent linear mixed-effects models developed at the inter-site level across the
three study sites. Model 1 includes the random effects for both wfExt and leadExt+
trailExt. Models 2 and 3 include the random effects only for wfExt and leadExt+trailExt,
respectively. σ represents the standard deviation of the random effects, β is the
estimate of the fixed effects, AIC is the model Akaike information criterion, and p-value
is from the likelihood ratio test between the specific models (Model 2 or 3) and the
general model (Model 1).

Model 1 Model 2 Model 3

Random effects (σ)
wfExt 0.23 0.18 -
leadExt+trailExt 0.08 - 0.31

Fixed effects (β)
wfExt 0.69 0.72 0.80
leadExt+trailExt −0.11 −0.16 −0.29

AIC 2663 2659 2672
p-value - 0.74 0.00096
these three sites. Therefore, the two edge-extent models are
essentially the same at the individual site level.

4.5.3. Generalizability of the statistical models

4.5.3.1. Model generalizability at the inter-site level. The above cross-
validation analysis at the individual sites indicated that the two edge-
extent models have similar performance. However, when they are
Fig. 7. Boxplots of the residuals of the fixed-effects edge-extent linear model for
different vegetation community types at the (a) Mendocino, (b) Santa Clara, and
(c) Lewis sites. Refer to Table 1 for detailed description of each vegetation community
type or primary land cover.



Table 10
Inter-site analysis of the DEM linear model for predicting canopy height using
simulated waveform metrics at 40 m and 10 m footprint sizes, respectively. ε, r, and
RMSE are the difference, correlation, and root mean square error between predicted
canopy height and the canopy height from airborne lidar data, respectively.

Model Mendocino site Santa Clara site Lewis site

ε (m) r RMSE
(m)

ε (m) r RMSE
(m)

ε (m) r RMSE
(m)

M40 −0.01 0.92 3.30 2.06 0.83 4.02 1.61 0.95 3.97
S40 −0.98 0.90 3.72 −0.13 0.85 3.16 0.51 0.95 3.74
L40 −1.55 0.92 3.69 0.82 0.84 3.36 −0.03 0.95 3.55
M10 0.04 0.99 1.39 1.13 0.97 1.72 0.37 0.99 1.28
S10 0.78 0.98 2.14 −0.01 0.98 1.01 1.28 0.99 1.85
L10 −0.40 0.98 1.66 0.23 0.98 1.10 −0.04 1.00 1.02
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applied across conifer and woodland sites, edge-extent linear models
demonstrate better model generalizability and have smaller AIC and
RMSE values than the edge-extent nonlinear models. For example, at
the Santa Clara site, the AIC of the edge-extent nonlinear model
(S_EN) is 6.8 smaller than the AIC of the edge-extent linear model
(S_EL) (Table 7 and Fig. 6(e) and (f)). And the RMSE of model S_EN is
0.03 smaller than the one of model S_EL. However, when these two
models are applied over the Mendocino site, the AIC of the linear
model S_EL is 237.7 smaller than the AIC of the nonlinearmodel S_EN;
the RMSE of the linear model S_EL is 17.14 m while the RMSE of the
nonlinear model S_EN is 31.06 m, almost twice as large as the former
(Table 7 and Fig. 6(b) and (c)).

The exploratory data analysis also reveals that the models have
better generalizability between two conifer forest sites than between
conifer and woodland sites (Table 7). For example, when the edge-
extent linear model developed at the Lewis conifer site (L_EL) is
applied at another conifer site in Mendocino, the AIC is only 20.6
larger than the AIC of the edge-extent linear model developed in
Mendocino (M_EL), and the RMSE of model L_EL increases only by
0.30 m to 6.64 m compared to the RMSE (6.34 m) of model M_EL.
However, when the edge-extent linear model developed at the
woodland site (S_EL) is applied in Mendocino, the AIC is 398 larger
than the one of model M_EL, and the RMSE of model S_EL is 17.14 m,
which is almost three times of the RMSE (6.34 m) of model M_EL
(Table 7 and Fig. 6(b)).

The following procedure is used to further rigorously test the
generalizability of the edge-extent linear models at the inter-site
level: first, three mixed-effects models were developed based on
Eq. (10) (see Table 8). Model 1 is the general one with random effects
for both wfExt and leadExt+trailExt. Models 2 and 3 are the specific
ones with one of the random effects excluded. If the significance level
of p-value from the likelihood ratio test between a specific model
(Model 2 or 3) and the general model (Model 1) is less than 0.05, it
implies that the random effects excluded in the specific model are
statistically significant in the general model. The results show that the
p-value for the random effects of wfExt is 0.00096 while the p-value
for the random effects of leadExt+trailExt is 0.74 (see Table 8). So,
there exist significant random effects for wfExt, which indicates that
the fixed-effects edge-extent linear model (Eq. (5)) does not have the
statistically-justified generalizability across the three sites. However,
when the same procedure was applied to only the two conifer sites, it
was found that neither of the random effects is statistically significant
(results not reported) so the fixed-effects edge-extent linear model
has the generalizability endorsed with the statistical test between the
two conifer sites. This confirms the results from the previous
exploratory data analysis. In the UMD Land Cover Classification Map
(Hansen et al., 1998) generated from AVHRR imagery, the two conifer
sites are within the same land cover while the woodland site is within
Table 9
Effects of footprint size on canopy height estimation based on waveform parameters simulat
square error between predicted canopy height and the canopy height from airborne lidar d

Site Footprint
size (m)

Direct method DE

ε (m) r RMSE(m) ε (

Mendocino 40 1.22 0.91 3.67 −
30 0.62 0.94 2.92 −
20 0.19 0.97 2.18 −
10 0.10 0.99 1.40

Santa Clara 40 2.98 0.83 4.70 −
30 2.11 0.89 3.47 −
20 1.61 0.93 2.59 −
10 0.72 0.98 1.31 −

Lewis 40 3.43 0.95 5.01 −
30 2.13 0.97 3.48
20 1.24 0.98 2.36 −
10 0.45 0.99 1.25 −
a separate land cover. This implies that combining land cover maps
from coarse-resolution remote sensing imagery such as AVHRR
and MODIS with GLAS could improve estimates of maximum cano-
py height over large areas. Further research is desired to test this
inference with more data.

4.5.3.2. Model generalizability at the intra-site level. Generalizability of
the edge-extent linear models was also tested using mixed-effects
model at the intra-site level. The analysis unveiled that neither of the
random effects is statistically significant for different vegetation
community types within any of the three sites. In other words, the
fixed-effects edge-extent linear models are adequate to model the
maximum canopy height within individual sites. This is evident in
the boxplots of the residuals of the fixed-effects edge-extent linear
model for different vegetation community types at each site (Fig. 7).
The boxes (representing upper and lower quartiles) of residuals of
most vegetation community types do not depart from zero. The ones
that depart from zeros mostly have a small number of shots (Table 1).
Note that the vegetation community types of GLAS shots are from the
Gap Analysis Program (GAP), which generates maps based on
medium-resolution Landsat imagery. The results are encouraging
because it implies that fine-scale vegetation community type maps
are not needed to stratify maximum canopy height models based on
GLAS data.

4.6. Simulations for the effects of footprint size on canopy
height estimation

Tables 5 and 7 indicate that both direct and statistical methods
suffer from very large RMSE. The most effective approach for
improving model performance might be reducing the waveform
footprint size. To examine the effects of footprint size on maximum
canopy height estimation, simulations with the direct method and the
ed from airborne lidar data. ε, r, and RMSE are the difference, correlation, and root mean
ata, respectively.

M linear model

m) r RMSE (m) Model

0.01 0.92 3.30 M40: h=0.97*wfExt−0.52*demExt
0.08 0.94 2.74 M30: h=0.97*wfExt−0.46*demExt
0.01 0.97 2.18 M20: h=0.96*wfExt−0.35*demExt
0.04 0.99 1.39 M10: h=0.98*wfExt−0.35*demExt
0.17 0.85 3.19 S40: h=1.03*wfExt−0.75*demExt
0.04 0.90 2.52 S30: h=1.11*wfExt−0.85*demExt
0.07 0.94 1.89 S20: h=1.08*wfExt−0.84*demExt
0.01 0.98 1.01 S10: h=1.07*wfExt−0.85*demExt
0.03 0.95 3.55 L40: h=0.96*wfExt−0.59*demExt
0.00 0.97 2.70 L30: h=0.97*wfExt−0.54*demExt
0.05 0.98 1.83 L20: h=0.99*wfExt−0.62*demExt
0.04 1.00 1.02 L10: h=1*wfExt−0.64*demExt



Fig. 8. Simulations of footprint size on canopy height estimation with the DEM linear models. The results from footprint sizes of 40 m (see subfigures (a), (c), and (e)) and 10 m (see
subfigures (b), (d), and (f)) are shown for the three study sites ((a)-(b) for Mendocino, (c)-(d) for Santa Clara, (e)-(f) for Lewis).
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DEM linear model were conducted at four footprint sizes varying from
40 m to 10 m by every 10 m.

It was found that the correlation coefficients r between the
predicted canopy height and ha get close to 1 and the RMSE reduces to
1–2 m when the footprint size decreases to 10 m for both direct and
statistical methods (Table 9). For the direct methods, all difference ε
values are positive, which agrees with the earlier conclusion that the
direct methods tend to overestimate canopy height. Nevertheless,
there is a positive relationship between footprint size and the
difference ε. This means that smaller footprints can reduce the
overestimation of canopy height for the direct methods. For the
statistical methods, there is a clear pattern to show that the smaller
the footprint size, the better the canopy height can be estimated with
larger correlation coefficient and smaller RMSE (Table 9). The smaller
footprint size can also increase the generalizability of the statistical
model. The RMSE is about 50% lower for a footprint size of 10 m
compared to the one for 40 m even when the models are applied
across woodland and conifer sites (Table 10). This can be better
visualized in Fig. 8 that shows the predicted canopy height versus ha
falls much closer around the 1:1 line for models from different sites
when the footprint size reduces from 40 m to 10 m. All these analyses
indicate that it is recommended that the footprint size of the next-
generation satellite lidar systems be at least 10 m or so if we want to
achieve meter-level accuracy of canopy height estimation using direct
and statistical methods.

5. Conclusions

This study investigated the potential of GLAS for retrieving
maximum canopy height over mountainous areas in the Pacific
Coast region, including two conifers sites (one in California and the
other in Washington) and one woodland site in California. Both direct
and statistical methods were tested for canopy height estimation and
it was found that:

• The direct methods tend to overestimate the maximum canopy
height over mountainous sites based on the error budget analysis.

• The direct methods are complicated by the identification of
waveform signal start and terrain ground elevation. There is no
consistent optimal threshold that can be used for detecting
waveform signal starts. Consistent with a previous study done in
the Appalachians Mountain in North Carolina (Chen, 2010), the
stronger one among the lowest two Gaussian peaks is the best
ground elevation metric for the two conifer sites. However, at the
woodland site, it is the strongest one among the lowest five
Gaussian peaks that matches the ground elevation the best. This
indicates that, if direct methods are used for estimating canopy
maximum height, the ground elevation peaks over woodlands may
need to be extracted separately from those over other land covers.

• The exploratory data analysis indicates that the edge-extent linear
regression models have better generalizability than the edge-extent
nonlinear models at the inter-site level.

• The inter-site level statistical test withmixed-effects models reveals
that the edge-extent linear models have good generalizability
between the two conifer sites but not between the conifer and
woodland sites. The intra-site level statistical test indicates that the
edge-extent linear models have good generalizability across
different vegetation community types within any given site. These
results unveil that the statistical modeling of maximum canopy
height over large areas with edge-extent linear models only need to
consider broad vegetation differences (such as woodlands versus
conifer forests instead of different vegetation communities within
woodlands or conifer forests).

• The simulation analysis indicated that the errors and uncertainty in
canopy height estimation can be significantly reduced by decreasing
the footprint size. When the footprint size is at 10 m, the canopy
height bias and RMSE for the DEM linear model can be reduced to
around 1 m and 1–2 m, respectively, even when the models are
applied across woodland and conifer sites. This provides importance
guidance in optimizing the footprint size of the next-generation
satellite lidar systems for mapping canopy height over mountainous
areas.

Despite these significant findings, this study can be improved in
many aspects. For example, the airborne lidar point density is around
1 point per squaremeter, whichmaymiss the treetops of some conifer
trees. Using airborne lidar data with high point density may reduce
the uncertainty of the analysis. Although it has been argued that
airborne lidar can provide better accuracy than conventional field
inventory (e.g., Hyyppä & Inkinen, 1999), it would be better if field
data are available to support this. Another uncertainty is the time
difference between airborne lidar data and GLAS data. Chen (2010)
found that footprint size parameters supplied in the GLAS products
might not be very accurate. Products with more accurate footprint
sizes from the GLAS team will help identify the coincident airborne
lidar data with better confidence. The variation of geolocation
accuracy among campaigns also complicates the analysis. Although
maximum canopy height focused in this study has important
ecological applications, more research is needed to estimate other
canopy heights such as the mean height, which may complement the
maximum height for characterizing canopy structure.
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